Are your existing data sets actually suited to seeding an AI engine?

In the virtualization domain, the old root cause technology is becoming obsolete because resources and workloads move around dynamically – we no longer have fixed network and compute resources. Existing service assurance systems in the telecommunication network were designed to manage a fixed set of resources and these assurance systems fall short in monitoring dynamic virtualized networks. Code was written using a rule based approach on known problems. Some advances have been made to develop signature patterns to determine the root cause of a problem, but this approach will also fall short in a dynamic virtualized network where autonomous changes will occur continuously.”
Patrick Kelly
here.

This quote is taken from a really interesting article by Patrick Kelly (see link above).

The old models of determining service impact and root-cause certainly struggle to hold up in the transient world of virtualised networks. Artificial Intelligence or Machine Learning or machine-led pattern identification, or whatever the technologies will be called by their developers, have a really important part to play in networks that are not just dynamic, but undergoing a touchpoint explosion.

The fascinating part of this story is that these clever new models will rely on data. Lots of data. We already have lots of data to feed into the new models. Buuuuut…. I’ve long held the reservation that there might be one slight problem… does all of our existing data actually suit the “AI” models available today?

Firstly, our existing data doesn’t include much of a history on dynamically transient networks. But the more important factor is that our networks have been managed by humans – operators who have a tendency of recording the quickest, dirtiest (and not necessarily correct or complete) set of data that allows them to restore service quickly.

Following a recent discussion with someone who’s running an AI assurance PoC for a big telco, it seems this reservation is turning out to be true. Their existing data sets just aren’t suited to the AI models. They’re having to reconsider their whole approach to their data model and how to collect / store it. They’re now starting to get positive results from the custom-built data sets.

It’s coming back to the same story as a post from last week – having connectors that can translate the different languages of ops, data, AI, etc and building a people / process / technology solution that the AI models can cope with.

You might not be ready to start an AI experiment yet, but you may like to start the journey by understanding whether your existing data is suited to AI modelling. If not, you get the chance to change it and have a great repository of data to seed an AI engine when you are ready in future. The first step on an exponential OSS journey.

Read the Passionate About OSS Blog for more or Subscribe to the Passionate About OSS Blog by Email

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.